When.com Web Search

  1. Ads

    related to: interval notation questions worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.

  3. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    The central question to be posed is the nature of the intersection over all the natural numbers, or, put differently, the set of numbers, that are found in every Interval (thus, for all ). In modern mathematics, nested intervals are used as a construction method for the real numbers (in order to complete the field of rational numbers).

  4. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  5. Bracket (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Bracket_(mathematics)

    In some European countries, the notation [, [is also used for this, and wherever comma is used as decimal separator, semicolon might be used as a separator to avoid ambiguity (e.g., (;)). [ 6 ] The endpoint adjoining the square bracket is known as closed , while the endpoint adjoining the parenthesis is known as open .

  6. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  7. Interval order - Wikipedia

    en.wikipedia.org/wiki/Interval_order

    More formally, a countable poset = (,) is an interval order if and only if there exists a bijection from to a set of real intervals, so (,), such that for any , we have < in exactly when <. Such posets may be equivalently characterized as those with no induced subposet isomorphic to the pair of two-element chains , in other words as the ( 2 + 2 ...