When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chain rule - Wikipedia

    en.wikipedia.org/wiki/Chain_rule

    All extensions of calculus have a chain rule. In most of these, the formula remains the same, though the meaning of that formula may be vastly different. One generalization is to manifolds. In this situation, the chain rule represents the fact that the derivative of f ∘ g is the composite of the derivative of f and the derivative of g. This ...

  3. Matrix calculus - Wikipedia

    en.wikipedia.org/wiki/Matrix_calculus

    In mathematics, matrix calculus is a specialized notation for doing multivariable calculus, especially over spaces of matrices.It collects the various partial derivatives of a single function with respect to many variables, and/or of a multivariate function with respect to a single variable, into vectors and matrices that can be treated as single entities.

  4. Jacobi's formula - Wikipedia

    en.wikipedia.org/wiki/Jacobi's_formula

    so that, by the chain rule, its differential is =. This summation is performed over all n×n elements of the matrix. To find ∂F/∂A ij consider that on the right hand side of Laplace's formula, the index i can be chosen at will. (In order to optimize calculations: Any other choice would eventually yield the same result, but it could be much ...

  5. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    The chain rule has a particularly elegant statement in terms of total derivatives. It says that, for two functions f {\displaystyle f} and g {\displaystyle g} , the total derivative of the composite function f ∘ g {\displaystyle f\circ g} at a {\displaystyle a} satisfies

  6. Faà di Bruno's formula - Wikipedia

    en.wikipedia.org/wiki/Faà_di_Bruno's_formula

    Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno ( 1855 , 1857 ), although he was not the first to state or prove the formula.

  7. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The chain rule is a formula for computing the derivative of the composition of two or more functions. That is, if f and g are functions, then the chain rule expresses the derivative of their composition f ∘ g (the function which maps x to f ( g ( x )) ) in terms of the derivatives of f and g and the product of functions as follows:

  8. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may often be evaluated by changing variables; this is enabled by the substitution rule and is analogous to the use of the chain rule above. Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1]

  9. Triple product rule - Wikipedia

    en.wikipedia.org/wiki/Triple_product_rule

    Suppose a function f(x, y, z) = 0, where x, y, and z are functions of each other. Write the total differentials of the variables = + = + Substitute dy into dx = [() + ()] + By using the chain rule one can show the coefficient of dx on the right hand side is equal to one, thus the coefficient of dz must be zero () + = Subtracting the second term and multiplying by its inverse gives the triple ...