Search results
Results From The WOW.Com Content Network
Closed graph theorems are of particular interest in functional analysis where there are many theorems giving conditions under which a linear map with a closed graph is necessarily continuous. If f : X → Y is a function between topological spaces whose graph is closed in X × Y and if Y is a compact space then f : X → Y is continuous.
Function : is graph continuous if for all there exists a function : such that ((),) is continuous at .. Dasgupta and Maskin named this property "graph continuity" because, if one plots a graph of a player's payoff as a function of his own strategy (keeping the other players' strategies fixed), then a graph-continuous payoff function will result in this graph changing continuously as one varies ...
For a Lipschitz continuous function, there is a double cone (shown in white) whose vertex can be translated along the graph so that the graph always remains entirely outside the cone. The concept of continuity for functions between metric spaces can be strengthened in various ways by limiting the way δ {\displaystyle \delta } depends on ε ...
The closed graph theorem is an important result in functional analysis that guarantees that a closed linear operator is continuous under certain conditions. The original result has been generalized many times. A well known version of the closed graph theorems is the following.
The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space ...
Continuous functions are of utmost importance in mathematics, functions and applications.However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there.
A chordal graph, a special type of perfect graph, has no holes of any size greater than three. The girth of a graph is the length of its shortest cycle; this cycle is necessarily chordless. Cages are defined as the smallest regular graphs with given combinations of degree and girth.
An odd hole is a hole of odd length. An anti-hole is an induced subgraph of order four whose complement is a cycle; equivalently, it is a hole in the complement graph. This terminology is mainly used in the context of perfect graphs, which are characterized by the strong perfect graph theorem as