Search results
Results From The WOW.Com Content Network
The original use of interpolation polynomials was to approximate values of important transcendental functions such as natural logarithm and trigonometric functions.Starting with a few accurately computed data points, the corresponding interpolation polynomial will approximate the function at an arbitrary nearby point.
A similar problem, involving equating like terms rather than coefficients of like terms, arises if we wish to de-nest the nested radicals + to obtain an equivalent expression not involving a square root of an expression itself involving a square root, we can postulate the existence of rational parameters d, e such that
Bulirsch and Stoer recognized that using rational functions as fitting functions for Richardson extrapolation in numerical integration is superior to using polynomial functions because rational functions are able to approximate functions with poles rather well (compared to polynomial functions), given that there are enough higher-power terms in ...
Calculating the interpolating polynomial is computationally expensive (see computational complexity) compared to linear interpolation. Furthermore, polynomial interpolation may exhibit oscillatory artifacts, especially at the end points (see Runge's phenomenon). Polynomial interpolation can estimate local maxima and minima that are outside the ...
For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
In mathematics, Thiele's interpolation formula is a formula that defines a rational function from a finite set of inputs and their function values (). The problem of generating a function whose graph passes through a given set of function values is called interpolation .
They were first used as a replacement for polynomials in interpolation, then as a tool to construct smooth and flexible shapes in computer graphics. It is commonly accepted that the first mathematical reference to splines is the 1946 paper by Schoenberg , which is probably the first place that the word "spline" is used in connection with smooth ...