When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    These equations for solution of a first-order partial differential equation are identical to the EulerLagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.

  4. Beltrami identity - Wikipedia

    en.wikipedia.org/wiki/Beltrami_identity

    The Beltrami identity, named after Eugenio Beltrami, is a special case of the EulerLagrange equation in the calculus of variations. The EulerLagrange equation serves to extremize action functionals of the form [] = [, (), ′ ()],

  5. Fundamental lemma of the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Fundamental_lemma_of_the...

    The fundamental lemma of the calculus of variations is typically used to transform this weak formulation into the strong formulation (differential equation), free of the integration with arbitrary function. The proof usually exploits the possibility to choose δf concentrated on an interval on which f keeps sign (positive or negative). Several ...

  6. Euler's identity - Wikipedia

    en.wikipedia.org/wiki/Euler's_identity

    Euler's identity is a direct result of Euler's formula, published in his monumental 1748 work of mathematical analysis, Introductio in analysin infinitorum, [16] but it is questionable whether the particular concept of linking five fundamental constants in a compact form can be attributed to Euler himself, as he may never have expressed it.

  7. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    To simplify the notation, let = ˙ and define a collection of n 2 functions Φ j i by =. Theorem. (Douglas 1941) There exists a Lagrangian L : [0, T] × TM → R such that the equations (E) are its EulerLagrange equations if and only if there exists a non-singular symmetric matrix g with entries g ij depending on both u and v satisfying the following three Helmholtz conditions:

  8. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Incorporating Lagrangian mechanics and using the EulerLagrange equation, Christoffel symbols can be substituted into the Lagrangian to account for the geometry of the manifold. Christoffel symbols being calculated from the metric tensor, the equations can be derived and expressed from the principle of least action. When applying the Euler ...

  9. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.