Search results
Results From The WOW.Com Content Network
> 10 MPa > 1,500 psi Pressure exerted by a 45 kg person wearing stiletto heels when a heel hits the floor [69] 15.5 Mpa 2,250 psi Primary coolant loop of a pressurized water reactor: 20 MPa 2,900 psi Typical pressure used for hydrogenolysis reactions [70] 21 MPa 3,000 psi Pressure of a typical aluminium scuba tank of pressurized air (210 bar ...
The pascal (symbol: Pa) is the unit of pressure in the International System of Units (SI). It is also used to quantify internal pressure, stress, Young's modulus, and ultimate tensile strength. The unit, named after Blaise Pascal, is an SI coherent derived unit defined as one newton per square metre (N/m 2). [1]
Flux F through a surface, dS is the differential vector area element, n is the unit normal to the surface. Left: No flux passes in the surface, the maximum amount flows normal to the surface. Right: The reduction in flux passing through a surface can be visualized by reduction in F or d S equivalently (resolved into components , θ is angle to ...
{{convert|100|Mm|mm}} → 100 megametres (1.0 × 10 11 mm) The output of {{convert}} can display multiple converted units, if further unit-codes are specified after the second unnamed parameter (without the pipe separator). Typical combination output units are listed below in column 7. {{convert|55|nmi|km mi}} → 55 nautical miles (102 km; 63 mi)
A msw is defined as 0.1 bar (= 10,000 Pa), is not the same as a linear metre of depth. 33.066 fsw = 1 atm [citation needed] (1 atm = 101,325 Pa / 33.066 = 3,064.326 Pa). The pressure conversion from msw to fsw is different from the length conversion: 10 msw = 32.6336 fsw, while 10 m = 32.8083 ft. [citation needed]
The ground pressure of motorized vehicles is often compared with the ground pressure of a human foot, which can be 60 – 80 kPa while walking or as much as 13 MPa for a person in spike heels. [3] Increasing the size of the contact area on the ground (the footprint) in relation to the weight decreases the unit ground pressure.
Solving the equation for the pressure gives = where m are meter and hPa refers to hecto-Pascal. This may be interpreted as the lowest terms of the Taylor expansion of p = 1013.25 exp ( − h 8431 m ) hPa {\displaystyle p=1013.25\exp \left({\frac {-h}{8431{\text{ m}}}}\right){\text{ hPa}}} where exp is the exponential function .
By examining the formulas for area moment of inertia, we can see that the stiffness of this beam will vary approximately as the third power of the radius or height. Thus the second moment of area will vary approximately as the inverse of the cube of the density, and performance of the beam will depend on Young's modulus divided by density cubed .