Search results
Results From The WOW.Com Content Network
In computer science, a microkernel (often abbreviated as μ-kernel) is the near-minimum amount of software that can provide the mechanisms needed to implement an operating system (OS). These mechanisms include low-level address space management, thread management, and inter-process communication (IPC).
L4, like its predecessor microkernel L3, was created by German computer scientist Jochen Liedtke as a response to the poor performance of earlier microkernel-based OSes. Liedtke felt that a system designed from the start for high performance, rather than other goals, could produce a microkernel of practical use.
A microkernel that is designed for a specific platform or device is only ever going to have what it needs to operate. The microkernel approach consists of defining a simple abstraction over the hardware, with a set of primitives or system calls to implement minimal OS services such as memory management, multitasking, and inter-process ...
Structure of monolithic kernel, microkernel and hybrid kernel-based operating systems A monolithic kernel is an operating system architecture with the entire operating system running in kernel space.
GNU Hurd is a collection of microkernel servers written as part of GNU, for the GNU Mach microkernel. It has been under development since 1990 by the GNU Project of the Free Software Foundation, designed as a replacement for the Unix kernel, [4] and released as free software under the GNU General Public License.
XNU is a hybrid kernel, containing features of both monolithic kernels and microkernels, attempting to make the best use of both technologies, such as the message passing ability of microkernels enabling greater modularity and larger portions of the OS to benefit from memory protection, and retaining the speed of monolithic kernels for some critical tasks.
A microkernel is a minimal computer operating system kernel which, in its purest form, provides no operating system services at all, only the mechanisms needed to implement such services, such as low-level address space management, thread management, and inter-process communication (IPC).
Mach (/ m ɑː k /) [1] is an operating system kernel developed at Carnegie Mellon University by Richard Rashid and Avie Tevanian to support operating system research, primarily distributed and parallel computing.