Search results
Results From The WOW.Com Content Network
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.
Here, p is the (positive) length of the line segment perpendicular to the line and delimited by the origin and the line, and is the (oriented) angle from the x-axis to this segment. It may be useful to express the equation in terms of the angle α = φ + π / 2 {\displaystyle \alpha =\varphi +\pi /2} between the x -axis and the line.
The line segments OT 1 and OT 2 are radii of the circle C; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2, respectively. But only a tangent line is perpendicular to the radial line. Hence, the two lines from P and passing through T 1 and T 2 are tangent to the circle C.
Arc length s of a logarithmic spiral as a function of its parameter θ. Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification.
When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...
In geometry, the mean line segment length is the average length of a line segment connecting two points chosen uniformly at random in a given shape. In other words, it is the expected Euclidean distance between two random points, where each point in the shape is equally likely to be chosen.
The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints.