Search results
Results From The WOW.Com Content Network
In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...
However, amicable numbers where the two members have different smallest prime factors do exist: there are seven such pairs known. [8] Also, every known pair shares at least one common prime factor. It is not known whether a pair of coprime amicable numbers exists, though if any does, the product of the two must be greater than 10 65.
The non-real factors come in pairs which when multiplied give quadratic polynomials with real coefficients. Since every polynomial with complex coefficients can be factored into 1st-degree factors (that is one way of stating the fundamental theorem of algebra ), it follows that every polynomial with real coefficients can be factored into ...
For example, if n = 171 × p × q where p < q are very large primes, trial division will quickly produce the factors 3 and 19 but will take p divisions to find the next factor. As a contrasting example, if n is the product of the primes 13729, 1372933, and 18848997161, where 13729 × 1372933 = 18848997157, Fermat's factorization method will ...
For example, the number of irreducible factors of a polynomial is the nullity of its Ruppert matrix. [7] Thus the multiplicities m 1 , … , m k {\displaystyle m_{1},\ldots ,m_{k}} can be identified by square-free factorization via numerical GCD computation and rank-revealing on Ruppert matrices.
For example, the integers 6, 10, 15 are coprime because 1 is the only positive integer that divides all of them. If every pair in a set of integers is coprime, then the set is said to be pairwise coprime (or pairwise relatively prime, mutually coprime or mutually relatively prime). Pairwise coprimality is a stronger condition than setwise ...
m is a divisor of n (also called m divides n, or n is divisible by m) if all prime factors of m have at least the same multiplicity in n. The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then ...
For example, the "primitive" friendly pair 6 and 28 gives rise to friendly pairs 6n and 28n for all n that are congruent to 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, or 41 modulo 42. [4] This shows that the natural density of the friendly numbers (if it exists) is positive.