Ads
related to: polynomials long division method examples math worksheets
Search results
Results From The WOW.Com Content Network
Blomqvist's method [1] is an abbreviated version of the long division above. This pen-and-paper method uses the same algorithm as polynomial long division, but mental calculation is used to determine remainders. This requires less writing, and can therefore be a faster method once mastered. The division is at first written in a similar way as ...
Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :
Caldrini (1491) is the earliest printed example of long division, known as the Danda method in medieval Italy, [4] and it became more practical with the introduction of decimal notation for fractions by Pitiscus (1608). The specific algorithm in modern use was introduced by Henry Briggs c. 1600. [5]
Horner's method is a fast, code-efficient method for multiplication and division of binary numbers on a microcontroller with no hardware multiplier. One of the binary numbers to be multiplied is represented as a trivial polynomial, where (using the above notation) a i = 1 {\displaystyle a_{i}=1} , and x = 2 {\displaystyle x=2} .
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
In algebra, the factor theorem connects polynomial factors with polynomial roots. Specifically, if f ( x ) {\displaystyle f(x)} is a polynomial, then x − a {\displaystyle x-a} is a factor of f ( x ) {\displaystyle f(x)} if and only if f ( a ) = 0 {\displaystyle f(a)=0} (that is, a {\displaystyle a} is a root of the polynomial).