When.com Web Search

  1. Ad

    related to: parallel lines in spherical geometry

Search results

  1. Results From The WOW.Com Content Network
  2. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    On the sphere there is no such thing as a parallel line. Line a is a great circle, the equivalent of a straight line in spherical geometry. Line c is equidistant to line a but is not a great circle. It is a parallel of latitude. Line b is another geodesic which intersects a in two antipodal points. They share two common perpendiculars (one ...

  3. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  4. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.

  5. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    In mathematics, non-Euclidean geometry consists of two geometries based on axioms closely related to those that specify Euclidean geometry.As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises by either replacing the parallel postulate with an alternative, or relaxing the metric requirement.

  6. Playfair's axiom - Wikipedia

    en.wikipedia.org/wiki/Playfair's_axiom

    In a plane, given a line and a point not on it, at most one line parallel to the given line can be drawn through the point. [1] It is equivalent to Euclid's parallel postulate in the context of Euclidean geometry [2] and was named after the Scottish mathematician John Playfair.

  7. Elliptic geometry - Wikipedia

    en.wikipedia.org/wiki/Elliptic_geometry

    Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines are usually assumed to intersect at a single point (rather than two).

  8. Franz Taurinus - Wikipedia

    en.wikipedia.org/wiki/Franz_Taurinus

    Motivated by the work of Schweikart, Taurinus examined the model of geometry on a "sphere" of imaginary radius, which he called "logarithmic-spherical" (now called hyperbolic geometry). He published his "theory of parallel lines" in 1825 [R 1] and "Geometriae prima elementa" in 1826.

  9. Finite geometry - Wikipedia

    en.wikipedia.org/wiki/Finite_geometry

    In an affine plane, the normal sense of parallel lines applies. In a projective plane, by contrast, any two lines intersect at a unique point, so parallel lines do not exist. Both finite affine plane geometry and finite projective plane geometry may be described by fairly simple axioms.