When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Geodesic polyhedron - Wikipedia

    en.wikipedia.org/wiki/Geodesic_polyhedron

    An icosahedron and related symmetry polyhedra can be used to define a high geodesic polyhedron by dividing triangular faces into smaller triangles, and projecting all the new vertices onto a sphere. Higher order polygonal faces can be divided into triangles by adding new vertices centered on each face.

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    The octant of a sphere is a spherical triangle with three right angles. Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles.

  4. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    Special cases are right triangles (p q 2). Uniform solutions are constructed by a single generator point with 7 positions within the fundamental triangle, the 3 corners, along the 3 edges, and the triangle interior. All vertices exist at the generator, or a reflected copy of it. Edges exist between a generator point and its image across a mirror.

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  6. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Given a unit sphere, a "spherical triangle" on the surface of the sphere is defined by the great circles connecting three points u, v, and w on the sphere (shown at right). If the lengths of these three sides are a (from u to v ), b (from u to w ), and c (from v to w ), and the angle of the corner opposite c is C , then the (first) spherical ...

  7. Schwarz triangle - Wikipedia

    en.wikipedia.org/wiki/Schwarz_triangle

    Each Schwarz triangle on a sphere defines a finite group, while on the Euclidean or hyperbolic plane they define an infinite group. A Schwarz triangle is represented by three rational numbers (p q r), each representing the angle at a vertex. The value n ⁄ d means the vertex angle is d ⁄ n of the half-circle.

  8. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.

  9. Half-side formula - Wikipedia

    en.wikipedia.org/wiki/Half-side_formula

    Spherical triangle. In spherical trigonometry, the half side formula relates the angles and lengths of the sides of spherical triangles, which are triangles drawn on the surface of a sphere and so have curved sides and do not obey the formulas for plane triangles. [1]