Search results
Results From The WOW.Com Content Network
In the field of distributed algorithms, graph coloring is closely related to the problem of symmetry breaking. The current state-of-the-art randomized algorithms are faster for sufficiently large maximum degree Δ than deterministic algorithms. The fastest randomized algorithms employ the multi-trials technique by Schneider and Wattenhofer. [25]
In the study of graph coloring problems in mathematics and computer science, a greedy coloring or sequential coloring [1] is a coloring of the vertices of a graph formed by a greedy algorithm that considers the vertices of the graph in sequence and assigns each vertex its first available color. Greedy colorings can be found in linear time, but ...
The Recursive Largest First (RLF) algorithm is a heuristic for the NP-hard graph coloring problem.It was originally proposed by Frank Leighton in 1979. [1]The RLF algorithm assigns colors to a graph’s vertices by constructing each color class one at a time.
Misra & Gries (1992) describe a polynomial time algorithm for coloring the edges of any graph with Δ + 1 colors, where Δ is the maximum degree of the graph. That is, the algorithm uses the optimal number of colors for graphs of class two, and uses at most one more color than necessary for all graphs.
For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.
The path graph with four vertices provides the simplest example of a graph whose chromatic number differs from its Grundy number. This graph can be colored with two colors, but its Grundy number is three: if the two endpoints of the path are colored first, the greedy coloring algorithm will use three colors for the whole graph.
The Misra & Gries edge coloring algorithm is a polynomial time algorithm in graph theory that finds an edge coloring of any simple graph. The coloring produced uses at most + colors, where is the maximum degree of the graph. This is optimal for some graphs, and it uses at most one color more than optimal for all others. The existence of such a ...
Chaitin's algorithm is a bottom-up, graph coloring register allocation algorithm that uses cost/degree as its spill metric. It is named after its designer, Gregory Chaitin. Chaitin's algorithm was the first register allocation algorithm that made use of coloring of the interference graph for both register allocations and spilling.