Search results
Results From The WOW.Com Content Network
The procedure works by assessing whether the observed departure, measured by the test statistic, is larger than a value defined, so that the probability of occurrence of a more extreme value is small under the null hypothesis (usually in less than either 5% or 1% of similar data-sets in which the null hypothesis does hold).
The earliest use of statistical hypothesis testing is generally credited to the question of whether male and female births are equally likely (null hypothesis), which was addressed in the 1700s by John Arbuthnot (1710), [46] and later by Pierre-Simon Laplace (1770s).
In statistical hypothesis testing, the null distribution is the probability distribution of the test statistic when the null hypothesis is true. [1] For example, in an F-test, the null distribution is an F-distribution. [2] Null distribution is a tool scientists often use when conducting experiments.
An important property of a test statistic is that its sampling distribution under the null hypothesis must be calculable, either exactly or approximately, which allows p-values to be calculated. A test statistic shares some of the same qualities of a descriptive statistic , and many statistics can be used as both test statistics and descriptive ...
Thus, the null hypothesis is rejected if >, (where , is the upper tail critical value for the distribution). Bartlett's test is a modification of the corresponding likelihood ratio test designed to make the approximation to the χ k − 1 2 {\displaystyle \chi _{k-1}^{2}} distribution better (Bartlett, 1937).
How to perform a Z test when T is a statistic that is approximately normally distributed under the null hypothesis is as follows: . First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T.
If the null hypothesis is true, the likelihood ratio test, the Wald test, and the Score test are asymptotically equivalent tests of hypotheses. [8] [9] When testing nested models, the statistics for each test then converge to a Chi-squared distribution with degrees of freedom equal to the difference in degrees of freedom in the two models.
In statistics, the Wald test (named after Abraham Wald) assesses constraints on statistical parameters based on the weighted distance between the unrestricted estimate and its hypothesized value under the null hypothesis, where the weight is the precision of the estimate.