Search results
Results From The WOW.Com Content Network
In practice, the magnitude (likelihood of an edge) calculation is more reliable and easier to interpret than the direction calculation. Mathematically, the gradient of a two-variable function (here the image intensity function) is at each image point a 2D vector with the components given by the derivatives in the horizontal and vertical ...
In a d-dimensional space, Hodge star takes a k-vector to a (d–k)-vector; thus only in d = 3 dimensions is the result an element of dimension one (3–2 = 1), i.e. a vector. For example, in d = 4 dimensions, the cross product of two vectors has dimension 4–2 = 2, giving a bivector. Thus, only in three dimensions does cross product define an ...
The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .
If the 4th component of the vector is 0 instead of 1, then only the vector's direction is reflected and its magnitude remains unchanged, as if it were mirrored through a parallel plane that passes through the origin. This is a useful property as it allows the transformation of both positional vectors and normal vectors with the same matrix.
By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.
GCE-Math is a version of C/C++ math functions written for C++ constexpr (compile-time calculation) CORE-MATH, correctly rounded for single and double precision. SIMD (vectorized) math libraries include SLEEF, Yeppp!, and Agner Fog's VCL, plus a few closed-source ones like SVML and DirectXMath. [9]
The vector triple product is defined as the cross product of one vector with the cross product of the other two. The following relationship holds: The following relationship holds: a × ( b × c ) = ( a ⋅ c ) b − ( a ⋅ b ) c {\displaystyle \mathbf {a} \times (\mathbf {b} \times \mathbf {c} )=(\mathbf {a} \cdot \mathbf {c} )\mathbf {b ...
In rotation group SO(3), it is shown that one can identify every A ∈ so(3) with an Euler vector ω = θu, where u = (x, y, z) is a unit magnitude vector. By the properties of the identification (), u is in the null space of A. Thus, u is left invariant by exp(A) and is hence a rotation axis.