When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.

  3. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus, but it was also proven independently by Hans Hahn.

  4. Dilation (operator theory) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(operator_theory)

    In operator theory, a dilation of an operator T on a Hilbert space H is an operator on a larger Hilbert space K, whose restriction to H composed with the orthogonal projection onto H is T. More formally, let T be a bounded operator on some Hilbert space H, and H be a subspace of a larger Hilbert space H' . A bounded operator V on H' is a ...

  5. Operator (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Operator_(mathematics)

    In mathematics, an operator is generally a mapping or function that acts on elements of a space to produce elements of another space (possibly and sometimes required to be the same space). There is no general definition of an operator, but the term is often used in place of function when the domain is a

  6. Operator topologies - Wikipedia

    en.wikipedia.org/wiki/Operator_topologies

    On norm bounded sets of B(H), the weak (operator) and ultraweak topologies coincide. This can be seen via, for instance, the Banach–Alaoglu theorem . For essentially the same reason, the ultrastrong topology is the same as the strong topology on any (norm) bounded subset of B( H ) .

  7. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  8. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  9. Atkinson's theorem - Wikipedia

    en.wikipedia.org/wiki/Atkinson's_theorem

    A T ∈ L(H) is a Fredholm operator if and only if T is invertible modulo compact perturbation, i.e. TS = I + C 1 and ST = I + C 2 for some bounded operator S and compact operators C 1 and C 2. In other words, an operator T ∈ L(H) is Fredholm, in the classical sense, if and only if its projection in the Calkin algebra is invertible.

  1. Related searches bounded operator wikipedia na srpski za gledanje sa prevodom bez registracije

    bounded operator wikipediabounded linear operator
    define bounded operatortvss bounded operator
    bounded operator formulawhat is an operator