When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    The slope of a velocity vs. time graph is acceleration, this time, placing velocity on the y-axis and time on the x-axis. Again the slope of a line is change in over change in : = = where is the velocity, and is the time.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Timing diagram over one revolution for angle, angular velocity, angular acceleration, and angular jerk. Consider a rigid body rotating about a fixed axis in an inertial reference frame. If its angular position as a function of time is θ(t), the angular velocity, acceleration, and jerk can be expressed as follows:

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Example of a velocity vs. time graph, and the relationship between velocity v on the y-axis, acceleration a (the three green tangent lines represent the values for acceleration at different points along the curve) and displacement s (the yellow area under the curve.)

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    It concerns only variables derived from the positions of objects and time. In circumstances of constant acceleration, these simpler equations of motion are usually referred to as the SUVAT equations, arising from the definitions of kinematic quantities: displacement (s), initial velocity (u), final velocity (v), acceleration (a), and time (t).

  7. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.

  8. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    By the fundamental theorem of calculus, it can be seen that the integral of the acceleration function a(t) is the velocity function v(t); that is, the area under the curve of an acceleration vs. time (a vs. t) graph corresponds to the change of velocity. =.

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The same reasoning used with respect to the position of a particle to define velocity, can be applied to the velocity to define acceleration. The acceleration of a particle is the vector defined by the rate of change of the velocity vector. The average acceleration of a particle over a time interval is defined as the ratio.