When.com Web Search

  1. Ad

    related to: curvature k calculator calculus equation

Search results

  1. Results From The WOW.Com Content Network
  2. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    The normal curvature, k n, is the curvature of the curve projected onto the plane containing the curve's tangent T and the surface normal u; the geodesic curvature, k g, is the curvature of the curve projected onto the surface's tangent plane; and the geodesic torsion (or relative torsion), τ r, measures the rate of change of the surface ...

  3. Principal curvature - Wikipedia

    en.wikipedia.org/wiki/Principal_curvature

    The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...

  4. Gaussian curvature - Wikipedia

    en.wikipedia.org/wiki/Gaussian_curvature

    In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ 1 and κ 2, at the given point: =.

  5. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.

  6. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...

  7. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The Gaussian curvature K = κ 1 κ 2 and the mean curvature H = (κ 1 + κ 2)/2 can be computed as follows: =, = + (). Up to a sign, these quantities are independent of the parametrization used, and hence form important tools for analysing the geometry of the surface.

  8. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. [2] The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.

  9. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    Curves on a surface which minimize length between the endpoints are called geodesics; they are the shape that an elastic band stretched between the two points would take. Mathematically they are described using ordinary differential equations and the calculus of variations. The differential geometry of surfaces revolves around the study of ...