When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.

  3. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for ⁡ >, and its analytic continuation elsewhere.

  4. List of zeta functions - Wikipedia

    en.wikipedia.org/wiki/List_of_zeta_functions

    Zeta function of an incidence algebra, a function that maps every interval of a poset to the constant value 1. Despite not resembling a holomorphic function, the special case for the poset of integer divisibility is related as a formal Dirichlet series to the Riemann zeta function.

  5. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

  6. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...

  7. Proof of the Euler product formula for the Riemann zeta function

    en.wikipedia.org/wiki/Proof_of_the_Euler_product...

    Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]

  8. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    In 1859 Bernhard Riemann used complex analysis and a special meromorphic function now known as the Riemann zeta function to derive an analytic expression for the number of primes less than or equal to a real number x. Remarkably, the main term in Riemann's formula was exactly the above integral, lending substantial weight to Gauss's conjecture.

  9. Bernoulli number - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_number

    The Bernoulli numbers can be expressed in terms of the Riemann zeta function as B n = −nζ(1 − n) for integers n ≥ 0 provided for n = 0 the expression −nζ(1 − n) is understood as the limiting value and the convention B 1 = ⁠ 1 / 2 ⁠ is used. This intimately relates them to the values of the zeta function at negative integers.