Search results
Results From The WOW.Com Content Network
Two disjoint sets. In set theory in mathematics and formal logic, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set. [1] For example, {1, 2, 3} and {4, 5, 6} are disjoint sets, while {1, 2, 3} and {3, 4, 5} are not disjoint. A collection of two ...
One set is said to intersect another set if . Sets that do not intersect are said to be disjoint . The power set of X {\displaystyle X} is the set of all subsets of X {\displaystyle X} and will be denoted by ℘ ( X ) = def { L : L ⊆ X } . {\displaystyle \wp (X)~{\stackrel {\scriptscriptstyle {\text{def}}}{=}}~\{~L~:~L\subseteq X~\}.}
The intersection of the sets {1, 2, 3} and {2, 3, 4} is {2, 3}. ... Intersecting and disjoint sets. We say ... Symmetric difference – Elements in exactly one of two ...
In mathematics, two sets are almost disjoint [1] [2] ... is an almost disjoint collection consisting of more than one set, then clearly its intersection is finite:
A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets [2] (i.e., the subsets are nonempty mutually disjoint sets). Equivalently, a family of sets P is a partition of X if and only if all of the following conditions hold: [3]
A disjoint union of an indexed family of sets (:) is a set , often denoted by , with an injection of each into , such that the images of these injections form a partition of (that is, each element of belongs to exactly one of these images). A disjoint union of a family of pairwise disjoint sets is their union.
The sets and are separated by closed neighbourhoods if there is a closed neighbourhood of and a closed neighbourhood of such that and are disjoint. Our examples, [ 0 , 1 ) {\displaystyle [0,1)} and ( 1 , 2 ] , {\displaystyle (1,2],} are not separated by closed neighbourhoods.
It turns out that this implies something which is seemingly stronger: in a Hausdorff space every pair of disjoint compact sets can also be separated by neighborhoods, [9] in other words there is a neighborhood of one set and a neighborhood of the other, such that the two neighborhoods are disjoint. This is an example of the general rule that ...