Search results
Results From The WOW.Com Content Network
Python also supports ternary operations called array slicing, e.g. a[b:c] return an array where the first element is a[b] and last element is a[c-1]. [5] OCaml expressions provide ternary operations against records, arrays, and strings: a.[b]<-c would mean the string a where index b has value c .
Ternary tree, a tree data structure in computer science Ternary search tree, a ternary (three-way) tree data structure of strings; Ternary search, a computer science technique for finding the minimum or maximum of a function; Ternary heap, a data structure in computer science; Ternary Golay code, a perfect [11, 6, 5] ternary linear code
In the above example, IIf is a ternary function, but not a ternary operator. As a function, the values of all three portions are evaluated before the function call occurs. This imposed limitations, and in Visual Basic .Net 9.0, released with Visual Studio 2008, an actual conditional operator was introduced, using the If keyword instead of IIf ...
In coding theory, the ternary Golay codes are two closely related error-correcting codes. The code generally known simply as the ternary Golay code is an [ 11 , 6 , 5 ] 3 {\displaystyle [11,6,5]_{3}} -code, that is, it is a linear code over a ternary alphabet; the relative distance of the code is as large as it possibly can be for a ternary ...
Euclid never used numbers to measure length, angle, or area. The Euclidean plane equipped with a chosen Cartesian coordinate system is called a Cartesian plane; a non-Cartesian Euclidean plane equipped with a polar coordinate system would be called a polar plane. Three parallel planes. A plane is a ruled surface.
A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall [1] to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation T {\displaystyle T} is defined by T ( a , b , c ) = a b + c ...
For functions defined in the plane or more generally on an Euclidean space , it is necessary to consider functions that are vector-valued or matrix-valued. It is also conceptually helpful to do this in an invariant manner (i.e., a coordinate-free way).
There are 673 6-uniform tilings of the Euclidean plane. Brian Galebach's search reproduced Krotenheerdt's list of 10 6-uniform tilings with 6 distinct vertex types, as well as finding 92 of them with 5 vertex types, 187 of them with 4 vertex types, 284 of them with 3 vertex types, and 100 with 2 vertex types.