Search results
Results From The WOW.Com Content Network
Convex regular icosahedron A tensegrity icosahedron. In geometry, an icosahedron (/ ˌ aɪ k ɒ s ə ˈ h iː d r ən,-k ə-,-k oʊ-/ or / aɪ ˌ k ɒ s ə ˈ h iː d r ən / [1]) is a polyhedron with 20 faces.
The 600-cell has icosahedral cross sections of two sizes, and each of its 120 vertices is an icosahedral pyramid; the icosahedron is the vertex figure of the 600-cell. The unit-radius 600-cell has tetrahedral cells of edge length 1 φ {\textstyle {\frac {1}{\varphi }}} , 20 of which meet at each vertex to form an icosahedral pyramid (a 4 ...
Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.
The truncated icosahedral graph. According to Steinitz's theorem, the skeleton of a truncated icosahedron, like that of any convex polyhedron, can be represented as a polyhedral graph, meaning a planar graph (one that can be drawn without crossing edges) and 3-vertex-connected graph (remaining connected whenever two of its vertices are removed ...
It has icosahedral symmetry (I h) and the same vertex arrangement as a rhombic triacontahedron. This can be seen as the three-dimensional equivalent of the compound of two pentagons ({10/2} "decagram"); this series continues into the fourth dimension as the compound of 120-cell and 600-cell and into higher dimensions as compounds of hyperbolic ...
Icosahedral capsid of an adenovirus Virus capsid T-numbers. The icosahedral structure is extremely common among viruses. The icosahedron consists of 20 triangular faces delimited by 12 fivefold vertexes and consists of 60 asymmetric units. Thus, an icosahedral virus is made of 60N protein subunits.
The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created. The frequency of a geodesic polyhedron is defined by the sum of ν = b + c. A harmonic is a subfrequency and can be any whole divisor of ν.
John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion .