When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    In the Hilbert space view, this is the orthogonal projection of onto the kernel of the expectation operator, which a continuous linear functional on the Hilbert space (in fact, the inner product with the constant random variable 1), and so this kernel is a closed subspace.

  3. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space [1] [2]) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar , often denoted with angle brackets such as in a , b {\displaystyle \langle a,b\rangle } .

  4. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    The first three functions in the sequence () = ⁡ on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by

  5. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space). [4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with ...

  6. Gelfand–Naimark–Segal construction - Wikipedia

    en.wikipedia.org/wiki/Gelfand–Naimark–Segal...

    The quotient space of by the vector subspace is an inner product space with the inner product defined by +, + := (),,, which is well-defined due to the Cauchy–Schwarz inequality. The Cauchy completion of A / I {\displaystyle A/I} in the norm induced by this inner product is a Hilbert space, which we denote by H {\displaystyle H} .

  7. Riesz representation theorem - Wikipedia

    en.wikipedia.org/wiki/Riesz_representation_theorem

    The Hilbert space has an associated inner product valued in 's underlying scalar field that is linear in one coordinate and antilinear in the other (as specified below). If H {\displaystyle H} is a complex Hilbert space ( F = C {\displaystyle \mathbb {F} =\mathbb {C} } ), then there is a crucial difference between the notations prevailing in ...

  8. Bra–ket notation - Wikipedia

    en.wikipedia.org/wiki/Bra–ket_notation

    The inner product on Hilbert space ( , ) (with the first argument anti linear as preferred by physicists) is fully equivalent to an (anti-linear) identification between the space of kets and that of bras in the bra ket notation: for a vector ket = | define a functional (i.e. bra) = | by

  9. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In the case where the Hilbert space is a space of functions on a bounded domain, these distinctions have to do with a familiar issue in quantum physics: One cannot define an operator—such as the momentum or Hamiltonian operator—on a bounded domain without specifying boundary conditions. In mathematical terms, choosing the boundary ...