Search results
Results From The WOW.Com Content Network
The Gaussian function has a 1/e 2 diameter (2w as used in the text) about 1.7 times the FWHM.. At a position z along the beam (measured from the focus), the spot size parameter w is given by a hyperbolic relation: [1] = + (), where [1] = is called the Rayleigh range as further discussed below, and is the refractive index of the medium.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
In laser science, the parameter M 2, also known as the beam propagation ratio or beam quality factor is a measure of laser beam quality. It represents the degree of variation of a beam from an ideal Gaussian beam. [1] It is calculated from the ratio of the beam parameter product (BPP) of the beam to that of a Gaussian beam with the same wavelength.
Gaussian beam width () as a function of the axial distance .: beam waist; : confocal parameter; : Rayleigh length; : total angular spread In optics and especially laser science, the Rayleigh length or Rayleigh range, , is the distance along the propagation direction of a beam from the waist to the place where the area of the cross section is doubled. [1]
p is the associated Laguerre polynomial of order p and index l, and w is the spot size of the mode corresponding to the Gaussian beam radius. Cylindrical transverse mode with p=2, l=1. With p = l = 0, the TEM 00 mode is the lowest order. It is the fundamental transverse mode of the laser resonator and has the same form as a Gaussian beam.
By observing and recording the beam pattern, for example, one can infer the spatial mode properties of the beam and whether or not the beam is being clipped by an obstruction; By focusing the laser beam with a lens and measuring the minimum spot size, the number of times diffraction limit or focusing quality can be computed.
This function is known as a super-Gaussian function and is often used for Gaussian beam formulation. [5] This function may also be expressed in terms of the full width at half maximum (FWHM), represented by w : f ( x ) = A exp ( − ln 2 ( 4 ( x − x 0 ) 2 w 2 ) P ) . {\displaystyle f(x)=A\exp \left(-\ln 2\left(4{\frac {(x-x_{0})^{2 ...