When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    The Elements (Ancient Greek: Στοιχεῖα Stoikheîa) is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions.

  3. Euclid's Data - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Data

    The Data of Euclid, trans. from the text of Menge by George L. McDowell and Merle A. Sokolik, Baltimore: Union Square Press, 1993 (ISBN 0-9635924-1-6) The Medieval Latin Translation of the Data of Euclid, translated by Shuntaro Ito, Tokyo University Press, 1980 and Birkhauser, 1998. (ISBN 3-7643-3005-8

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  5. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The hexagonal packing of circles on a 2-dimensional Euclidean plane. These problems are mathematically distinct from the ideas in the circle packing theorem.The related circle packing problem deals with packing circles, possibly of different sizes, on a surface, for instance the plane or a sphere.

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm was probably invented before Euclid, depicted here holding a compass in a painting of about 1474. The Euclidean algorithm is one of the oldest algorithms in common use. [27] It appears in Euclid's Elements (c. 300 BC), specifically in Book 7 (Propositions 1–2) and Book 10 (Propositions 2–3). In Book 7, the algorithm ...

  7. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    The two first subsections, are proofs of the generalized version of Euclid's lemma, namely that: if n divides ab and is coprime with a then it divides b. The original Euclid's lemma follows immediately, since, if n is prime then it divides a or does not divide a in which case it is coprime with a so per the generalized version it divides b.

  8. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  9. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.