Search results
Results From The WOW.Com Content Network
It can only choose a new state, the result of following the transition. A pushdown automaton (PDA) differs from a finite state machine in two ways: It can use the top of the stack to decide which transition to take. It can manipulate the stack as part of performing a transition. A pushdown automaton reads a given input string from left to right.
The two are not equivalent for the deterministic pushdown automaton (although they are for the non-deterministic pushdown automaton). The languages accepted by empty stack are those languages that are accepted by final state and are prefix-free: no word in the language is the prefix of another word in the language. [2] [3]
The set of all context-free languages is identical to the set of languages accepted by pushdown automata, which makes these languages amenable to parsing.Further, for a given CFG, there is a direct way to produce a pushdown automaton for the grammar (and thereby the corresponding language), though going the other way (producing a grammar given an automaton) is not as direct.
Nested words over the alphabet = {,, …,} can be encoded into "ordinary" words over the tagged alphabet ^, in which each symbol a from Σ has three tagged counterparts: the symbol a for encoding a call position in a nested word labelled with a, the symbol a for encoding a return position labelled with a, and finally the symbol a itself for representing an internal position labelled with a.
An embedded pushdown automaton or EPDA is a computational model for parsing languages generated by tree-adjoining grammars (TAGs). It is similar to the context-free grammar-parsing pushdown automaton, but instead of using a plain stack to store symbols, it has a stack of iterated stacks that store symbols, giving TAGs a generative capacity between context-free and context-sensitive grammars ...
Push-down automaton. Add languages. Add links. Article; Talk; ... Download QR code; Print/export Download as PDF; Printable version; In other projects
A weighted context-free grammar (WCFG) is a more general category of context-free grammar, where each production has a numeric weight associated with it. The weight of a specific parse tree in a WCFG is the product [7] (or sum [8]) of all rule weights in the tree. Each rule weight is included as often as the rule is used in the tree.
A corollary of this is that not all context-free languages can be recognized by an LL(k) parser. An LL parser is called LL-regular (LLR) if it parses an LL-regular language. [clarification needed] [2] [3] [4] The class of LLR grammars contains every LL(k) grammar for every k. For every LLR grammar there exists an LLR parser that parses the ...