When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Each such rotation acts as an ordinary 2-dimensional rotation in the plane orthogonal to this axis. Since every 2-dimensional rotation can be represented by an angle φ, an arbitrary 3-dimensional rotation can be specified by an axis of rotation together with an angle of rotation about this axis.

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  4. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    The rotation group is a point stabilizer in a broader group of (orientation-preserving) motions. For a particular rotation: The axis of rotation is a line of its fixed points. They exist only in n = 3. The plane of rotation is a plane that is invariant under the rotation. Unlike the axis, its points are not fixed themselves.

  5. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    For example, 2 1 is a 180° (twofold) rotation followed by a translation of ⁠ 1 / 2 ⁠ of the lattice vector. 3 1 is a 120° (threefold) rotation followed by a translation of ⁠ 1 / 3 ⁠ of the lattice vector. The possible screw axes are: 2 1, 3 1, 3 2, 4 1, 4 2, 4 3, 6 1, 6 2, 6 3, 6 4, and 6 5.

  6. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    The group is isomorphic to alternating group A 4. 3×4-fold, 4×3-fold, and 6×2-fold axes: the rotation group O of order 24 of a cube and a regular octahedron. The group is isomorphic to symmetric group S 4. 6×5-fold, 10×3-fold, and 15×2-fold axes: the rotation group I of order 60 of a dodecahedron and an icosahedron.

  7. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    When comparing the symmetry type of two objects, the origin is chosen for each separately, i.e., they need not have the same center. Moreover, two objects are considered to be of the same symmetry type if their symmetry groups are conjugate subgroups of O(3) (two subgroups H 1, H 2 of a group G are conjugate, if there exists g ∈ G such that H 1 = g −1 H 2 g).

  8. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    A rotation represented by an Euler axis and angle. In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed point.

  9. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    However, letting H = {1, ρ, ρ 2} ⊂ D 3 be the cyclic subgroup generated by a rotation, the decorated figure X + consists of a 3-cycle of arrows with consistent orientation. Then H is normal, since drawing such a cycle with either orientation yields the same symmetry group H .