Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
In 1917, Rutherford and his assistant William Kay began exploring the passage of alpha particles through gases such as hydrogen and nitrogen. In this experiment, they shot a beam of alpha particles through hydrogen, and they carefully placed their detector—a zinc sulfide screen—just beyond the range of the alpha particles, which were ...
English: Basic diagram (rutherford ) of the atomic planetary model (nitrogen): electrons in green and nucleus in red. Deutsch: Atommodell nach Rutherford für Stickstoff, Elektronen: grün, Atomkern: rot
After Rutherford's discovery, subsequent research determined the atomic structure which led to Rutherford's gold foil experiment. Scientists eventually discovered that atoms have a positively charged nucleus (with an atomic number of charges) in the center, with a radius of about 1.2 × 10 −15 meters × [atomic mass number] 1 ⁄ 3 .
A schematic of the nucleus of an atom indicating β − radiation, the emission of a fast electron from the nucleus (the accompanying antineutrino is omitted). In the Rutherford model for the nucleus, a red sphere was a proton with positive charge, and a blue sphere was a proton tightly bound to an electron, with no net charge.
Rutherford's model, being supported primarily by scattering data unfamiliar to many scientists, did not catch on until Niels Bohr joined Rutherford's lab and developed a new model for the electrons. [54]: 304 Rutherford model predicted that the scattering of alpha particles would be proportional to the square of the atomic charge.
The Rutherford–Bohr model of the hydrogen atom After Bohr's use of Einstein 's explanation of the photoelectric effect to relate energy levels in atoms with the wavelength of emitted light, the connection between the structure of electrons in atoms and the emission and absorption spectra of atoms became an increasingly useful tool in the ...
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...