Search results
Results From The WOW.Com Content Network
In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant. A ...
Einstein's explanation of the photoelectric effect extended the quantum theory which Max Planck had developed in his successful explanation of black-body radiation. Despite the greater fame achieved by his other works, such as that on special relativity, it was his work on the photoelectric effect that won him his Nobel Prize in 1921. [9]
As shown by Albert Einstein, [10] [53] some form of energy quantization must be assumed to account for the thermal equilibrium observed between matter and electromagnetic radiation; for this explanation of the photoelectric effect, Einstein received the 1921 Nobel Prize in physics. [54]
To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an electromagnetic field consists of particles of energy of amount hν, where h is the Planck constant and ν is the wave frequency.
The photoelectric effect: Einstein explained this in 1905 (and later received a Nobel prize for it) using the concept of photons, particles of light with quantized energy. Robert Millikan's oil-drop experiment, which showed that electric charge occurs as quanta (whole units). (1909)
The photo-electric quantum theory was the work cited when Einstein was awarded the Nobel Prize in Physics in 1921. Suspicious of the general adulation of Einstein, Lenard became a prominent skeptic of relativity and of Einstein's theories generally; he did not, however, dispute Einstein's explanation of the photoelectric effect.
The notions of light as a particle resurfaced in the 20th century with the photoelectric effect. In 1905, Albert Einstein explained this effect by introducing the concept of light quanta or photons. Quantum particles are considered to have wave–particle duality.
Together with the photoelectric effect, this became one of the most important pieces of evidence for the need of quantization. Einstein used the levels of the quantum mechanical oscillator many years before the advent of modern quantum mechanics .