Search results
Results From The WOW.Com Content Network
The Schoenflies (or Schönflies) notation, named after the German mathematician Arthur Moritz Schoenflies, is a notation primarily used to specify point groups in three dimensions. Because a point group alone is completely adequate to describe the symmetry of a molecule , the notation is often sufficient and commonly used for spectroscopy .
In Schoenflies notation, point groups are denoted by a letter symbol with a subscript. The symbols used in crystallography mean the following: C n (for cyclic) indicates that the group has an n-fold rotation axis. C nh is C n with the addition of a mirror (reflection) plane perpendicular to the axis of rotation.
In Schoenflies notation, the symbol of a space group is represented by the symbol of corresponding point group with additional superscript. The superscript doesn't give any additional information about symmetry elements of the space group, but is instead related to the order in which Schoenflies derived the space groups.
John Conway uses a variation of the Schoenflies notation, based on the groups' quaternion algebraic structure, labeled by one or two upper case letters, and whole number subscripts. The group order is defined as the subscript, unless the order is doubled for symbols with a plus or minus, "±", prefix, which implies a central inversion. [3]
All of the group operations described above and the symbols for crystallographic point groups themselves were first published by Arthur Schoenflies in 1891 but the groups had been applied by other researchers to the external morphology of crystals much earlier in the 19th century.
The S 2 group is the same as the C i group in the nonaxial groups section. S n groups with an odd value of n are identical to C nh groups of same n and are therefore not considered here (in particular, S 1 is identical to C s). The S 8 table reflects the 2007 discovery of errors in older references. [4] Specifically, (R x, R y) transform not as ...
The space groups with given point group are numbered by 1, 2, 3, ... (in the same order as their international number) and this number is added as a superscript to the Schönflies symbol for the point group. For example, groups numbers 3 to 5 whose point group is C 2 have Schönflies symbols C 1 2, C 2 2, C 3 2. Fedorov notation Shubnikov symbol
It lists the International Tables for Crystallography space group numbers, [2] followed by the crystal class name, its point group in Schoenflies notation, Hermann–Mauguin (international) notation, orbifold notation, and Coxeter notation, type descriptors, mineral examples, and the notation for the space groups.