Search results
Results From The WOW.Com Content Network
The mathematician Paul Erdős was known for describing proofs which he found to be particularly elegant as coming from "The Book", a hypothetical tome containing the most beautiful method(s) of proving each theorem. The book Proofs from THE BOOK, published in 2003, is devoted to presenting 32 proofs its editors find particularly pleasing.
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
In 1925 Ackermann published a proof that a weak system can prove the consistency of a version of analysis, but von Neumann found an explicit mistake in it a few years later. Gödel's incompleteness theorems showed that it is not possible to prove the consistency of analysis using weaker systems. Groups of order 64.
Bijaganita (IAST: Bījagaṇita) was treatise on algebra by the Indian mathematician Bhāskara II. It is the second volume of his main work Siddhānta Shiromani ("Crown of treatises") [1] alongside Lilāvati, Grahaganita and Golādhyāya. [2] [3]
With the development of formal logic, Hilbert asked whether it would be possible to prove that an axiom system is consistent by analyzing the structure of possible proofs in the system, and showing through this analysis that it is impossible to prove a contradiction. This idea led to the study of proof theory.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
One of the widely used types of impossibility proof is proof by contradiction.In this type of proof, it is shown that if a proposition, such as a solution to a particular class of equations, is assumed to hold, then via deduction two mutually contradictory things can be shown to hold, such as a number being both even and odd or both negative and positive.
In abstract algebra, a subset of a field is algebraically independent over a subfield if the elements of do not satisfy any non-trivial polynomial equation with coefficients in . In particular, a one element set { α } {\displaystyle \{\alpha \}} is algebraically independent over K {\displaystyle K} if and only if α {\displaystyle \alpha } is ...