When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.

  3. Body roundness index - Wikipedia

    en.wikipedia.org/wiki/Body_roundness_index

    The degree of circularity of an ellipse is quantified by eccentricity, with values between 0 to 1, where 0 is a perfect circle (waist circumference same as height) and 1 is a vertical line. [1] To accommodate human shape data in a greater range, Thomas and colleagues mapped eccentricity in a range of 1 to 20 by using the equation: [1]

  4. Equant - Wikipedia

    en.wikipedia.org/wiki/Equant

    Applied without an epicycle (as for the Sun), using an equant allows for the angular speed to be correct at perigee and apogee, with a ratio of (+) / (where is the orbital eccentricity). But compared with the Keplerian orbit , the equant method causes the body to spend too little time far from the Earth and too much close to the Earth.

  5. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a parabola, and if e > 1 the conic is a hyperbola.

  6. Spheroid - Wikipedia

    en.wikipedia.org/wiki/Spheroid

    The most extreme example is Jupiter's moon Io, which becomes slightly more or less prolate in its orbit due to a slight eccentricity, causing intense volcanism. The major axis of the prolate spheroid does not run through the satellite's poles in this case, but through the two points on its equator directly facing toward and away from the primary.

  7. Eccentric anomaly - Wikipedia

    en.wikipedia.org/wiki/Eccentric_anomaly

    In orbital mechanics, the eccentric anomaly is an angular parameter that defines the position of a body that is moving along an elliptic Kepler orbit.The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly.

  8. Angular eccentricity - Wikipedia

    en.wikipedia.org/wiki/Angular_eccentricity

    Angular eccentricity is one of many parameters which arise in the study of the ellipse or ellipsoid. It is denoted here by α (alpha). It is denoted here by α (alpha). It may be defined in terms of the eccentricity , e , or the aspect ratio, b/a (the ratio of the semi-minor axis and the semi-major axis ):

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    For elliptical orbits, a simple proof shows that ⁡ gives the projection angle of a perfect circle to an ellipse of eccentricity e. For example, to view the eccentricity of the planet Mercury (e = 0.2056), one must simply calculate the inverse sine to find the projection angle of 11.86 degrees. Then, tilting any circular object by that angle ...