When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    A polynomial f of degree n greater than one, which is irreducible over F q, defines a field extension of degree n which is isomorphic to the field with q n elements: the elements of this extension are the polynomials of degree lower than n; addition, subtraction and multiplication by an element of F q are those of the polynomials; the product ...

  3. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    If F is a finite field, a non-constant monic polynomial with coefficients in F is irreducible over F, if it is not the product of two non-constant monic polynomials, with coefficients in F. As every polynomial ring over a field is a unique factorization domain, every monic polynomial over a finite field may be factored in a unique way (up to ...

  4. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  5. Degree of a field extension - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_field_extension

    Suppose that E/F is a field extension. Then E may be considered as a vector space over F (the field of scalars). The dimension of this vector space is called the degree of the field extension, and it is denoted by [E:F]. The degree may be finite or infinite, the field being called a finite extension or infinite extension accordingly.

  6. Separable extension - Wikipedia

    en.wikipedia.org/wiki/Separable_extension

    An arbitrary polynomial f with coefficients in some field F is said to have distinct roots or to be square-free if it has deg f roots in some extension field.For instance, the polynomial g(X) = X 2 − 1 has precisely deg g = 2 roots in the complex plane; namely 1 and −1, and hence does have distinct roots.

  7. Hilbert's basis theorem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_basis_theorem

    Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.

  8. Berlekamp's algorithm - Wikipedia

    en.wikipedia.org/wiki/Berlekamp's_algorithm

    In mathematics, particularly computational algebra, Berlekamp's algorithm is a well-known method for factoring polynomials over finite fields (also known as Galois fields). The algorithm consists mainly of matrix reduction and polynomial GCD computations. It was invented by Elwyn Berlekamp in 1967.

  9. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.