Search results
Results From The WOW.Com Content Network
If homogeneous coordinates of a point are multiplied by a non-zero scalar then the resulting coordinates represent the same point. Since homogeneous coordinates are also given to points at infinity, the number of coordinates required to allow this extension is one more than the dimension of the projective space being considered. For example ...
Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Homogeneous ...
Each Plücker coordinate appears in two of the four equations, each time multiplying a different variable; and as at least one of the coordinates is nonzero, we are guaranteed non-vacuous equations for two distinct planes intersecting in L. Thus the Plücker coordinates of a line determine that line uniquely, and the map α is an injection.
Trilinear coordinates are an example of homogeneous coordinates. The ratio x : y is the ratio of the perpendicular distances from the point to the sides (extended if necessary) opposite vertices A and B respectively; the ratio y : z is the ratio of the perpendicular distances from the point to the sidelines opposite vertices B and C ...
In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple (r, θ, z). [8] Spherical coordinates take this a step further by converting the pair of cylindrical coordinates ( r , z ) to polar coordinates ( ρ , φ ) giving a triple ( ρ , θ ...
Viewed in terms of homogeneous coordinates, a real vector space of homogeneous coordinates of the original geometry is complexified. A point of the original geometric space is defined by an equivalence class of homogeneous vectors of the form λu, where λ is an nonzero complex value and u is a real vector.
The mapping from 3D to 2D coordinates is (x′, y′) = ( x / w , y / w ). We can convert 2D points to homogeneous coordinates by defining them as (x, y, 1). Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0.
Their zeros are the homogeneous coordinates of two projective curves. Thus the homogeneous coordinates of their intersection points are the common zeros of P and Q . By collecting together the powers of one indeterminate, say y , one gets univariate polynomials whose coefficients are homogeneous polynomials in x and t .