Ad
related to: stellar nucleosynthesis diagram
Search results
Results From The WOW.Com Content Network
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.
The [α/Fe] versus [Fe/H] diagram is a type of graph commonly used in stellar and galactic astrophysics. It shows the logarithmic ratio number densities of diagnostic elements in stellar atmospheres compared to the solar value. The x-axis represents the abundance of iron (Fe) vs. hydrogen (H), that is, [Fe/H].
Diagram illustration the creation of new elements by the alpha process. ... Stellar nucleosynthesis is the nuclear process by which new nuclei are produced.
Fusing with additional helium nuclei can create heavier elements in a chain of stellar nucleosynthesis known as the alpha process, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process.
Primary stellar nucleosynthesis begins earlier in the galaxy than does secondary nucleosynthesis. Alternatively the high density of neutrons within neutron stars would be available for rapid assembly into r-process nuclei if a collision were to eject portions of a neutron star, which then rapidly expands freed from confinement.
Stellar evolution is the process by which a star changes over the course of its lifetime and how it can lead to the creation of a new star. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The s-process is believed to occur mostly in asymptotic giant branch stars, seeded by iron nuclei left by a supernova during a previous generation of stars. In contrast to the r-process which is believed to occur over time scales of seconds in explosive environments, the s-process is believed to occur over time scales of thousands of years, passing decades between neutron captures.