Search results
Results From The WOW.Com Content Network
Magnetic dipole–dipole interaction, also called dipolar coupling, refers to the direct interaction between two magnetic dipoles. Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that ...
Schematic representation of two schemes to experimentally realize the Dicke model: on the left, the equilibrium approach based on the dipole coupling between the two levels and, on the right, the nonequilibrium approach based on two-photon processes, namely stimulated Raman scattering. Only the latter scheme is used to realize the Dicke model.
Solid-state 900 MHz (21.1 T [1]) NMR spectrometer at the Canadian National Ultrahigh-field NMR Facility for Solids. Solid-state nuclear magnetic resonance (ssNMR) is a spectroscopy technique used to characterize atomic-level structure and dynamics in solid materials. ssNMR spectra are broader due to nuclear spin interactions which can be categorized as dipolar coupling, chemical shielding ...
Molecular biology laboratory equipment (6 P) O. Optical devices (21 C, 129 P, 1 F) Optomechanics (10 P) P. Positioning instruments (1 C, 11 P) R. Laboratory robots (4 ...
Aspirator - Beaker - Boiling tube - Büchner funnel - Bunsen burner - Burette - Calorimeter - Colorimeter - Conical measure - Nuclear Magnetic Resonance - Mass Spectrometer - Liquid Chromatography - Gas Chromatography - Crucible - Cuvette - Laboratory flasks (Büchner, Erlenmeyer, Florence, Retort, Round-bottom, Volumetric) - Fume hood - Gas syringe - Graduated cylinder - Perkin triangle ...
More specifically, we shall derive an analytical expression for the strength of the inter-dot Foerster coupling. It can be also shown that this coupling is, under certain conditions, of dipole-dipole type and that it is responsible for resonant exciton exchange between adjacent QD's. This is a transfer of energy only, not a tunnelling effect.
Historically, the first and most studied example of this effect is the linear magnetoelectric effect.Mathematically, while the electric susceptibility and magnetic susceptibility describe the electric and magnetic polarization responses to an electric, resp. a magnetic field, there is also the possibility of a magnetoelectric susceptibility which describes a linear response of the electric ...
An example of a dipole–dipole interaction can be seen in hydrogen chloride (HCl): the positive end of a polar molecule will attract the negative end of the other molecule and influence its position. Polar molecules have a net attraction between them. Examples of polar molecules include hydrogen chloride (HCl) and chloroform (CHCl 3).