Search results
Results From The WOW.Com Content Network
It is named after Émile Borel and Francesco Paolo Cantelli, who gave statement to the lemma in the first decades of the 20th century. [1] [2] A related result, sometimes called the second Borel–Cantelli lemma, is a partial converse of the first Borel–Cantelli lemma. The lemma states that, under certain conditions, an event will have ...
This is a direct implication from the Borel–Cantelli lemma. If S n is a sum of n real independent random variables: = + + then S n converges almost surely if and only if S n converges in probability. The proof can be found in Page 126 (Theorem 5.3.4) of the book by Kai Lai Chung. [13]
Proof: We will prove this statement using the portmanteau lemma, part A. First we want to show that (X n, c) converges in distribution to (X, c). By the portmanteau lemma this will be true if we can show that E[f(X n, c)] → E[f(X, c)] for any bounded continuous function f(x, y). So let f be such arbitrary bounded continuous function.
Borel's law of large numbers, named after Émile Borel, states that if an experiment is repeated a large number of times, independently under identical conditions, then the proportion of times that any specified event is expected to occur approximately equals the probability of the event's occurrence on any particular trial; the larger the ...
Borel–Cantelli lemma; C. Covering lemma; ... Vitali covering lemma; W. Whitney covering lemma This page was last edited on 1 January 2018, at 13:47 (UTC) ...
Show that limsup of (,,) (,) (,) (,) are non-positive almost surely by setting α = n β for any β > 1 and applying the Borel–Cantelli lemma. Show that liminf and limsup of − 1 n log j ( n , X ) {\displaystyle -{\frac {1}{n}}\log j(n,X)} are lower and upper bounded almost surely by H ∞ and H k respectively by breaking up the ...
Burnside's lemma also known as the Cauchy–Frobenius lemma; Frattini's lemma (finite groups) Goursat's lemma; Mautner's lemma (representation theory) Ping-pong lemma (geometric group theory) Schreier's subgroup lemma; Schur's lemma (representation theory) Zassenhaus lemma
Proofs of Borel's lemma can be found in many text books on analysis, including Golubitsky & Guillemin (1974) and Hörmander (1990), from which the proof below is taken. Note that it suffices to prove the result for a small interval I = (− ε , ε ), since if ψ ( t ) is a smooth bump function with compact support in (− ε , ε ) equal ...