Search results
Results From The WOW.Com Content Network
The closest pair of points problem or closest pair problem is a problem of computational geometry: given points in metric space, find a pair of points with the smallest distance between them. The closest pair problem for points in the Euclidean plane [ 1 ] was among the first geometric problems that were treated at the origins of the systematic ...
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
Distance geometry is the branch of mathematics concerned with characterizing and studying sets of points based only on given values of the distances between pairs of points. [1] [2] [3] More abstractly, it is the study of semimetric spaces and the isometric transformations between them. In this view, it can be considered as a subject within ...
The radial distance ρ is the Euclidean distance from the z-axis to the point P. The azimuth φ is the angle between the reference direction on the chosen plane and the line from the origin to the projection of P on the plane. The axial coordinate or height z is the signed distance from the chosen plane to the point P.
The formula for the closest point to the origin may be expressed more succinctly using notation from linear algebra. The expression a x + b y + c z {\displaystyle ax+by+cz} in the definition of a plane is a dot product ( a , b , c ) ⋅ ( x , y , z ) {\displaystyle (a,b,c)\cdot (x,y,z)} , and the expression a 2 + b 2 + c 2 {\displaystyle a^{2 ...
In mathematics, a spherical coordinate system specifies a given point in three-dimensional space by using a distance and two angles as its three coordinates. These are the radial distance r along the line connecting the point to a fixed point called the origin; the polar angle θ between this radial line and a given polar axis; [a] and
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
In mathematics and its applications, the signed distance function or signed distance field (SDF) is the orthogonal distance of a given point x to the boundary of a set Ω in a metric space (such as the surface of a geometric shape), with the sign determined by whether or not x is in the interior of Ω.