Search results
Results From The WOW.Com Content Network
The cosmic microwave background was first predicted in 1948 by Ralph Alpher and Robert Herman, in a correction [16] they prepared for a paper by Alpher's PhD advisor George Gamow. [17] Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K. [18]
1938: Walther Nernst re-estimates the cosmic ray temperature as 0.75 K. [2] 1946: The term "microwave" is first used in print in an astronomical context in an article "Microwave Radiation from the Sun and Moon" by Robert Dicke and Robert Beringer. 1946: Robert Dicke predicts a microwave background radiation temperature of 20 K (ref: Helge Kragh)
The discovery of cosmic microwave background radiation constitutes a major development in modern physical cosmology.In 1964, US physicist Arno Allan Penzias and radio-astronomer Robert Woodrow Wilson discovered the cosmic microwave background (CMB), estimating its temperature as 3.5 K, as they experimented with the Holmdel Horn Antenna.
CMB spectral distortions are tiny departures of the average cosmic microwave background (CMB) frequency spectrum from the predictions given by a perfect black body.They can be produced by a number of standard and non-standard processes occurring at the early stages of cosmic history, and therefore allow us to probe the standard picture of cosmology.
A comparison of the sensitivity and resolution of WMAP with COBE and Penzias and Wilson's telescope, simulated data [1]. This list is a compilation of experiments measuring the cosmic microwave background (CMB) radiation anisotropies and polarization since the first detection of the CMB by Penzias and Wilson in 1964.
Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013. It was an ambitious project that aimed to map the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and angular resolution.
Cosmic microwave background radiation (CMBR) from outer space is also a form of cosmic noise. CMBR is thought to be a relic of the Big Bang, and pervades the space almost homogeneously over the entire celestial sphere. The bandwidth of the CMBR is wide, though the peak is in the microwave range.
The Cosmic Background Explorer (COBE / ˈ k oʊ b i / KOH-bee), also referred to as Explorer 66, was a NASA satellite dedicated to cosmology, which operated from 1989 to 1993.Its goals were to investigate the cosmic microwave background radiation (CMB or CMBR) of the universe and provide measurements that would help shape the understanding of the cosmos.