When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    The leaves will represent the final classification decision the model has produced based on the mutations a sample either has or does not have. The left tree is the decision tree we obtain from using information gain to split the nodes and the right tree is what we obtain from using the phi function to split the nodes.

  3. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The samples that are on the left node of the tree would be classified as cancerous by the tree, while those on the right would be non-cancerous. This tree is relatively accurate at classifying the samples that were used to build it (which is a case of overfitting), but it would still classify sample C2 incorrectly. To remedy this, the tree can ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in ... are the left and right children of node using split , respectively; and are the ...

  5. Tree rotation - Wikipedia

    en.wikipedia.org/wiki/Tree_rotation

    A double left rotation at X can be defined to be a right rotation at the right child of X followed by a left rotation at X; similarly, a double right rotation at X can be defined to be a left rotation at the left child of X followed by a right rotation at X. Tree rotations are used in a number of tree data structures such as AVL trees, red ...

  6. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

  7. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    To traverse binary trees with depth-first search, perform the following operations at each node: [3] [4] If the current node is empty then return. Execute the following three operations in a certain order: [5] N: Visit the current node. L: Recursively traverse the current node's left subtree. R: Recursively traverse the current node's right ...

  8. Fast-and-frugal trees - Wikipedia

    en.wikipedia.org/wiki/Fast-and-frugal_trees

    A fast-and-frugal tree is a classification or a decision tree that has m+1 exits, with one exit for each of the first m −1 cues and two exits for the last cue. Mathematically, fast-and-frugal trees can be viewed as lexicographic heuristics or as linear classification models with non-compensatory weights and a threshold.

  9. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is defined as a binary tree with two additional constraints: [3] Shape property: a binary heap is a complete binary tree; that is, all levels of the tree, except possibly the last one (deepest) are fully filled, and, if the last level of the tree is not complete, the nodes of that level are filled from left to right.