When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Two's complement - Wikipedia

    en.wikipedia.org/wiki/Two's_complement

    Two's complement is the most common method of representing signed (positive, negative, and zero) integers on computers, [1] and more generally, fixed point binary values. Two's complement uses the binary digit with the greatest value as the sign to indicate whether the binary number is positive or negative; when the most significant bit is 1 the number is signed as negative and when the most ...

  3. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    The four best-known methods of extending the binary numeral system to represent signed numbers are: sign–magnitude, ones' complement, two's complement, and offset binary. Some of the alternative methods use implicit instead of explicit signs, such as negative binary, using the base −2.

  4. Method of complements - Wikipedia

    en.wikipedia.org/wiki/Method_of_complements

    The smaller numbers, for use when subtracting, are the nines' complement of the larger numbers, which are used when adding. In mathematics and computing , the method of complements is a technique to encode a symmetric range of positive and negative integers in a way that they can use the same algorithm (or mechanism ) for addition throughout ...

  5. Subtractor - Wikipedia

    en.wikipedia.org/wiki/Subtractor

    Subtractors are usually implemented within a binary adder for only a small cost when using the standard two's complement notation, by providing an addition/subtraction selector to the carry-in and to invert the second operand. = ¯ + (definition of two's complement notation)

  6. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  7. Ones' complement - Wikipedia

    en.wikipedia.org/wiki/Ones'_complement

    The ones' complement of a binary number is the value obtained by inverting (flipping) all the bits in the binary representation of the number. The name "ones' complement" [1] refers to the fact that such an inverted value, if added to the original, would always produce an "all ones" number (the term "complement" refers to such pairs of mutually additive inverse numbers, here in respect to a ...

  8. Bit numbering - Wikipedia

    en.wikipedia.org/wiki/Bit_numbering

    A diagram showing how manipulating the least significant bits of a color can have a very subtle and generally unnoticeable effect on the color. In this diagram, green is represented by its RGB value, both in decimal and in binary. The red box surrounding the last two bits illustrates the least significant bits changed in the binary representation.

  9. Offset binary - Wikipedia

    en.wikipedia.org/wiki/Offset_binary

    Offset binary may be converted into two's complement by inverting the most significant bit. For example, with 8-bit values, the offset binary value may be XORed with 0x80 in order to convert to two's complement. In specialised hardware it may be simpler to accept the bit as it stands, but to apply its value in inverted significance.