Search results
Results From The WOW.Com Content Network
Negative mass is any region of space in which for some observers the mass density is measured to be negative. This may occur due to a region of space in which the sum of the three normal stress components (pressure on each of three axes) of the Einstein stress–energy tensor is larger in magnitude than the mass density.
The changes in shape and flexibility affect the mechanical properties of whole blood. A change in plasma osmotic pressure alters the hematocrit, that is, the volume concentration of red cells in the whole blood by redistributing water between the intravascular and extravascular spaces. This in turn affects the mechanics of the whole blood.
Arterioles carrying blood to superficial capillaries under the surface of the skin can shrink (constrict), thereby rerouting blood away from the skin and towards the warmer core of the body. This prevents blood from losing heat to the surroundings and also prevents the core temperature dropping further. This process is called vasoconstriction.
Negative mass would possess some strange properties, such as accelerating in the direction opposite of applied force. Despite being inconsistent with the expected behavior of "normal" matter, negative mass is mathematically consistent and introduces no violation of conservation of momentum or energy .
With humid heat, the moisture in the air can prevent the evaporation of sweat. [21] Regardless of acclimatization, humid heat poses a far greater threat than dry heat; humans cannot carry out physical outdoor activities at any temperature above 32 °C (90 °F) when the ambient humidity is greater than 95%.
Blood flow to the muscles is lower in cold water, but exercise keeps the muscle warm and flow elevated even when the skin is chilled. Blood flow to fat normally increases during exercise, but this is inhibited by immersion in cold water. Adaptation to cold reduces the extreme vasoconstriction which usually occurs with cold water immersion. [5]
Blood viscosity is a measure of the resistance of blood to flow. It can also be described as the thickness and stickiness of blood. This biophysical property makes it a critical determinant of friction against the vessel walls, the rate of venous return, the work required for the heart to pump blood, and how much oxygen is transported to tissues and organs.
The enthalpy change ΔH for a reaction is equal to the heat q transferred out of (or into) a closed system at constant pressure without in- or output of electrical energy. Heat production or absorption in a chemical reaction is measured using calorimetry, e.g. with a bomb calorimeter.