When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  3. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    L1-norm principal component analysis (L1-PCA) is a general method for multivariate data analysis. [1] L1-PCA is often preferred over standard L2-norm principal component analysis (PCA) when the analyzed data may contain outliers (faulty values or corruptions), as it is believed to be robust .

  4. Principal component regression - Wikipedia

    en.wikipedia.org/wiki/Principal_component_regression

    In statistics, principal component regression (PCR) is a regression analysis technique that is based on principal component analysis (PCA). PCR is a form of reduced rank regression . [ 1 ] More specifically, PCR is used for estimating the unknown regression coefficients in a standard linear regression model .

  5. Scree plot - Wikipedia

    en.wikipedia.org/wiki/Scree_plot

    In multivariate statistics, a scree plot is a line plot of the eigenvalues of factors or principal components in an analysis. [1] The scree plot is used to determine the number of factors to retain in an exploratory factor analysis (FA) or principal components to keep in a principal component analysis (PCA).

  6. Multiple correspondence analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple_correspondence...

    This involves the development of direct connections between simple correspondence analysis, principal component analysis and MCA with a form of cluster analysis known as Euclidean classification. [3] Two extensions have great practical use. It is possible to include, as active elements in the MCA, several quantitative variables.

  7. ANOVA–simultaneous component analysis - Wikipedia

    en.wikipedia.org/wiki/ANOVA–simultaneous...

    Simultaneous component analysis is mathematically identical to PCA, but is semantically different in that it models different objects or subjects at the same time. The standard notation for a SCA – and PCA – model is: = ′ + where X is the data, T are the component scores and P are the component loadings.

  8. Modes of variation - Wikipedia

    en.wikipedia.org/wiki/Modes_of_variation

    Functional principal component analysis provides methods for the estimation of () and (,) in detail, often involving point wise estimate and interpolation. Substituting estimates for the unknown quantities, the k {\displaystyle k} -th mode of variation of X ( t ) {\displaystyle X(t)} can be estimated by

  9. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    In the field of multivariate statistics, kernel principal component analysis (kernel PCA) [1] is an extension of principal component analysis (PCA) using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are performed in a reproducing kernel Hilbert space .