Search results
Results From The WOW.Com Content Network
In physical terms, the divergence of a vector field is the extent to which the vector field flux behaves like a source or a sink at a given point. It is a local measure of its "outgoingness" – the extent to which there are more of the field vectors exiting from an infinitesimal region of space than entering it.
Unlike the gradient and divergence, curl as formulated in vector calculus does not generalize simply to other dimensions; some generalizations are possible, but only in three dimensions is the geometrically defined curl of a vector field again a vector field.
This glossary of physics is a list of definitions of terms and ... An optical system that produces no net convergence or divergence of ... positive angular velocity ...
In physics, drawings of field lines are mainly useful in cases where the sources and sinks, if any, have a physical meaning, as opposed to e.g. the case of a force field of a radial harmonic. For example, Gauss's law states that an electric field has sources at positive charges , sinks at negative charges, and neither elsewhere, so electric ...
The condition of zero divergence is satisfied whenever a vector field v has only a vector potential component, because the definition of the vector potential A as: = automatically results in the identity (as can be shown, for example, using Cartesian coordinates): = =
Particular care must be taken to check the meaning of the symbols. The mathematics convention. Spherical coordinates (r, θ, φ) as typically used: radial distance r, azimuthal angle θ, and polar angle φ. + The meanings of θ and φ have been swapped—compared to the physics convention. The 'south'-direction x-axis is depicted but the 'north ...
This means that there is no dipole. If an electric field is applied to an insulator, then (for instance) the negative charges can move slightly towards the positive side of the field, and the positive charges in the other direction. This leads to an induced dipole which is described as a polarization.
The vorticity would be twice the mean angular velocity vector of those particles relative to their center of mass, oriented according to the right-hand rule. By its own definition, the vorticity vector is a solenoidal field since ∇ ⋅ ω = 0. {\displaystyle \nabla \cdot {\boldsymbol {\omega }}=0.}