Search results
Results From The WOW.Com Content Network
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Optical mapping [1] is a technique for constructing ordered, genome-wide, high-resolution restriction maps from single, stained molecules of DNA, called "optical maps". By mapping the location of restriction enzyme sites along the unknown DNA of an organism, the spectrum of resulting DNA fragments collectively serves as a unique "fingerprint" or "barcode" for that sequence.
A genome sequence is the complete list ... whereas analyses of coverage depth and mapping topology can provide details regarding structural variations such as ...
Low-resolution physical mapping is typically capable of resolving DNA ranging from one base pair to several mega bases. In this category, most mapping methods involve generating a somatic cell hybrid panel, which is able to map any human DNA sequences, the gene of interest [clarification needed], to specific chromosomes of animal cells, such as those of mice and hamsters. [4]
The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint.
Whereas a genome sequence lists the order of every DNA base in a genome, a genome map identifies the landmarks. A genome map is less detailed than a genome sequence and aids in navigating around the genome. [75] [76] An example of a variation map is the HapMap being developed by the International HapMap Project. The HapMap is a haplotype map of ...
Genomics is an interdisciplinary field of molecular biology focusing on the structure, function, evolution, mapping, and editing of genomes.A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration.
Optical mapping is the process of immobilizing the DNA on a slide and digesting it with restriction enzymes. The fragment ends are then fluorescently tagged and stitched back together. For the last two decades, optical mapping has been prohibitively expensive, but recent advances in technology have reduced cost significantly. [5] [13]