Search results
Results From The WOW.Com Content Network
The threshold voltage, commonly abbreviated as V th or V GS(th), of a field-effect transistor (FET) is the minimum gate-to-source voltage (V GS) that is needed to create a conducting path between the source and drain terminals. It is an important scaling factor to maintain power efficiency.
Generally, a TTL output does not rise high enough to be reliably recognized as a logic 1 by a CMOS input, especially if it is only connected to a high-input-impedance CMOS input that does not source significant current. This problem was solved by the invention of the 74HCT family of devices that uses CMOS technology but TTL input logic levels.
Multi-threshold CMOS (MTCMOS) is a variation of CMOS chip technology which has transistors with multiple threshold voltages (V th) in order to optimize delay or power.The V th of a MOSFET is the gate voltage where an inversion layer forms at the interface between the insulating layer (oxide) and the substrate (body) of the transistor.
Threshold voltage for this device lies around 0.45 V. ... Because of this behavior of input and output, the CMOS circuit's output is the inverse of the input.
The first CMOS family of logic integrated circuits was introduced by RCA as CD4000 COS/MOS, the 4000 series, in 1968. Initially CMOS logic was slower than LS-TTL. However, because the logic thresholds of CMOS were proportional to the power supply voltage, CMOS devices were well-adapted to battery-operated systems with simple power supplies.
Some CMOS parts such as 74HCT74 for high-speed CMOS with TTL-compatible input thresholds are functionally similar to the TTL part. Not all functions are available in all families. Not all functions are available in all families.
Overdrive voltage, usually abbreviated as V OV, is typically referred to in the context of MOSFET transistors.The overdrive voltage is defined as the voltage between transistor gate and source (V GS) in excess of the threshold voltage (V TH) where V TH is defined as the minimum voltage required between gate and source to turn the transistor on (allow it to conduct electricity).
The circuit is named inverting since the output voltage always has an opposite sign to the input voltage when it is out of the hysteresis cycle (when the input voltage is above the high threshold or below the low threshold). However, if the input voltage is within the hysteresis cycle (between the high and low thresholds), the circuit can be ...