Search results
Results From The WOW.Com Content Network
In computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker is an approach to feature extraction. It is proposed mainly for the purpose of dealing with the problem that traditional image registration techniques are generally costly. KLT makes use of spatial intensity information to direct the search for the position that yields the ...
OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly for real-time computer vision. [2] Originally developed by Intel, it was later supported by Willow Garage, then Itseez (which was later acquired by Intel [3]). The library is cross-platform and licensed as free and open-source software under Apache License ...
In computer vision, the Lucas–Kanade method is a widely used differential method for optical flow estimation developed by Bruce D. Lucas and Takeo Kanade.It assumes that the flow is essentially constant in a local neighbourhood of the pixel under consideration, and solves the basic optical flow equations for all the pixels in that neighbourhood, by the least squares criterion.
A recent algorithm for solving the problem as well as a solution classification for it is given in the 2003 IEEE Transactions on Pattern Analysis and Machine Intelligence paper by Gao, et al. [6] An open source implementation of Gao's P3P solver can be found in OpenCV's calib3d module in the solvePnP function. [7]
Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]
Roundup was designed by Ka-Ping Yee for the Software Carpentry project and was developed from 2001 to 2016 under the direction of Richard Jones. Since then, it has been developed by the Roundup community. It was the issue tracker for the Python programming language for 17 years before migrating to GitHub. [4]
Point set registration is the process of aligning two point sets. Here, the blue fish is being registered to the red fish. In computer vision, pattern recognition, and robotics, point-set registration, also known as point-cloud registration or scan matching, is the process of finding a spatial transformation (e.g., scaling, rotation and translation) that aligns two point clouds.
The snakes model is popular in computer vision, and snakes are widely used in applications like object tracking, shape recognition, segmentation, edge detection and stereo matching. A snake is an energy minimizing, deformable spline influenced by constraint and image forces that pull it towards object contours and internal forces that resist ...