Search results
Results From The WOW.Com Content Network
In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is commonly used for lossless data compression.The process of finding or using such a code is Huffman coding, an algorithm developed by David A. Huffman while he was a Sc.D. student at MIT, and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".
While priority queues are often implemented using heaps, they are conceptually distinct from heaps. A priority queue is an abstract data type like a list or a map; just as a list can be implemented with a linked list or with an array, a priority queue can be implemented with a heap or another method such as an ordered array.
This makes the min-max heap a very useful data structure to implement a double-ended priority queue. Like binary min-heaps and max-heaps, min-max heaps support logarithmic insertion and deletion and can be built in linear time. [3] Min-max heaps are often represented implicitly in an array; [4] hence it's referred to as an implicit data structure.
A priority queue is an abstract data-type similar to a regular queue or stack. Each element in a priority queue has an associated priority. In a priority queue, elements with high priority are served before elements with low priority. Priority queues support the following operations: insert: add an element to the queue with an associated priority.
In order for a symbol code scheme such as the Huffman code to be decompressed, the same model that the encoding algorithm used to compress the source data must be provided to the decoding algorithm so that it can use it to decompress the encoded data. In standard Huffman coding this model takes the form of a tree of variable-length codes, with ...
An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.
The d-ary heap or d-heap is a priority queue data structure, a generalization of the binary heap in which the nodes have d children instead of 2. [1] [2] [3] Thus, a binary heap is a 2-heap, and a ternary heap is a 3-heap. According to Tarjan [2] and Jensen et al., [4] d-ary heaps were invented by Donald B. Johnson in 1975. [1]
Adaptive Huffman coding (also called Dynamic Huffman coding) is an adaptive coding technique based on Huffman coding. It permits building the code as the symbols are being transmitted, having no initial knowledge of source distribution, that allows one-pass encoding and adaptation to changing conditions in data.