Search results
Results From The WOW.Com Content Network
FLT_MANT_DIG, DBL_MANT_DIG, LDBL_MANT_DIG – number of FLT_RADIX-base digits in the floating-point significand for types float, double, long double, respectively FLT_MIN_EXP , DBL_MIN_EXP , LDBL_MIN_EXP – minimum negative integer such that FLT_RADIX raised to a power one less than that number is a normalized float, double, long double ...
C# allows an implementation for a given hardware architecture to always use a higher precision for intermediate results if available, i.e. C# does not allow the programmer to optionally force intermediate results to use the potential lower precision of single/double. [94] Although Java's floating-point arithmetic is largely based on IEEE 754 ...
Arithmetic underflow can occur when the true result of a floating-point operation is smaller in magnitude (that is, closer to zero) than the smallest value representable as a normal floating-point number in the target datatype. [1] Underflow can in part be regarded as negative overflow of the exponent of the floating-point value. For example ...
On x86 and x86-64, the most common C/C++ compilers implement long double as either 80-bit extended precision (e.g. the GNU C Compiler gcc [13] and the Intel C++ Compiler with a /Qlong‑double switch [14]) or simply as being synonymous with double precision (e.g. Microsoft Visual C++ [15]), rather than as quadruple precision.
The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .
push the constant 0.0 (a double) onto the stack dconst_1 0f 0000 1111 → 1.0 push the constant 1.0 (a double) onto the stack ddiv 6f 0110 1111 value1, value2 → result divide two doubles dload 18 0001 1000 1: index → value load a double value from a local variable #index: dload_0 26 0010 0110 → value load a double from local variable 0 ...
Loop unrolling, also known as loop unwinding, is a loop transformation technique that attempts to optimize a program's execution speed at the expense of its binary size, which is an approach known as space–time tradeoff. The transformation can be undertaken manually by the programmer or by an optimizing compiler.
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.