When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    In numerical analysis, Bairstow's method is an efficient algorithm for finding the roots of a real polynomial of arbitrary degree. The algorithm first appeared in the appendix of the 1920 book Applied Aerodynamics by Leonard Bairstow. [1] [non-primary source needed] The algorithm finds the roots in complex conjugate pairs using only real ...

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    The following is an example of a possible implementation of Newton's method in the Python (version 3.x) programming language for finding a root of a function f which has derivative f_prime. The initial guess will be x 0 = 1 and the function will be f ( x ) = x 2 − 2 so that f ′ ( x ) = 2 x .

  4. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    Finding roots in a specific region of the complex plane, typically the real roots or the real roots in a given interval (for example, when roots represents a physical quantity, only the real positive ones are interesting). For finding one root, Newton's method and other general iterative methods work generally well.

  5. Wilkinson's polynomial - Wikipedia

    en.wikipedia.org/wiki/Wilkinson's_polynomial

    This shows that the root α j will be less stable if there are many roots α k close to α j, in the sense that the distance |α j − α k | between them is smaller than |α j |. Example. For the root α 1 = 1, the derivative is equal to 1/19! which is very small; this root is stable even for large changes in t.

  6. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    Before continuing to the roots of (), it might be necessary to numerically improve the accuracy of the root approximations for (), for instance by Newton's method. Graeffe's method works best for polynomials with simple real roots, though it can be adapted for polynomials with complex roots and coefficients, and roots with higher multiplicity.

  7. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  8. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    Function minimization at minima.hpp with an example locating function minima. Root finding implements the newer TOMS748, a more modern and efficient algorithm than Brent's original, at TOMS748, and Boost.Math rooting finding that uses TOMS748 internally with examples. The Optim.jl package implements the algorithm in Julia (programming language)

  9. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.